[5]

1. Let $x_1 \ge x_2 \ge \dots \ge 0$. Show that $\sum_{j=1}^{\infty} x_j$ is finite if and only if $\sum_{j=0}^{\infty} y_j < \infty$ where $y_k = 2^k x_{2^k}$ for $k = 0, 1, 2, 3.\dots$. [4]

Solution: Theorem 3.27 in Principles of Mathematical Analysis by Walter Rudin

2. Let $f : [a,b] \to \mathbb{R}$ be continuous and twice differentiable. Show that there exists c in (a,b) such that $f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(c)$ [5]

Solution: Put n = 2 in Theorem 5.15 in *Principles of Mathematical Analysis* by Walter Rudin \Box

3. Let $y_1, y_2, y_3...$ be any Cauchy sequence of reals. Without using the completeness of \mathbb{R} , show that the sequence $y_1, y_2...$ is a bounded sequence. [2]

Solution: Let $\epsilon > 0$. There exists $N \in \mathbb{N}$ such that $|y_N - y_m| < \epsilon$, $\forall m \ge N$. Therefore every element of the sequence after the *N*-th stage lies in the closed and bounded interval $[y_N - \epsilon, y_N + \epsilon]$. There are only finitely many elements of the sequence outside this bounded interval. Hence boundedness of the sequence follows.

4. Show that the complex numbers \mathbb{C} is complete. [You can use \mathbb{R} is complete] [3]

Solution: Let $\{z_n\}$ be a Cauchy sequence in \mathbb{C} and $z_n = a_n + ib_n$, $\forall n \in \mathbb{N}$. Then $\{a_n\}$ and $\{b_n\}$ are Cauchy in \mathbb{R} . Let $\{a_n\}$ converges to a and $\{b_n\}$ converges to b in \mathbb{R} then $\{z_n\}$ converges to z = a + ib in \mathbb{C} .

5. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence defined by $x_1 = \frac{1}{2}$ and, for any $n \ge 1$,

$$x_{n+1} = \frac{x_n^2}{x_n^2 - x_n + 1}$$

prove that $\sum_{n=1}^{\infty} x_n$ is convergent.

Solution: Consider the function $f(x) = \frac{x}{x^2 - x + 1} = \frac{x^2}{(x - 1)^2 + x}$. Hence for 0 < x < 1, $f(x) < \frac{x^2}{x} = x$. Since $x_1 = \frac{1}{2} < 1$, we get $x_{n+1} = f(x_n) < x_n < 1$, $\forall n \in \mathbb{N}$, inductively. Thus $\{x_n\}$ is monotonically decreasing. We will apply ratio test to conclude the convergence. $\frac{x_{n+1}}{x_n} = \frac{\frac{x_n^2}{x_n^2 - x_n + 1}}{x_n} = \frac{x_n}{x_n^2 - x_n + 1} = \frac{x_n}{(x_n - 1)^2 + x_n} < 1$. The last inequality follows because $x_n - 1 > 0$.

- 6. (a) Let u_n be a sequence of complex numbers with $\sum |u_n| < \infty$. Show that $\sum_{1}^{\infty} u_n^2$ exists. [3]
 - (b) Give an example $a_1, a_2, ...$ a sequence of real numbers such that $\sum_{n=1}^{\infty} a_n$ exists but $\sum a_n^2 = \infty$ and prove your claim. [2]

Solution:

- (a) Since $\sum |u_n| < \infty$, $|u_n| < 1$, for all n > N, for some $N \in \mathbb{N}$. Therefore $|u_n|^2 < |u_n|$ for all n > N. Hence $\sum_{n=1}^{\infty} u_n^2$ is absolutely convergent.
- (b) Take $a_n = (-1)^n \frac{1}{\sqrt{n}}$. Theorem 3.28 and Theorem 3.43 in *Principles of Mathematical Analysis* by *Walter Rudin* proves what is the required.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$f(x+y) = f(x) + f(y)$$

for all x, y in \mathbb{R} . If f is continuous at x_0 , show that f is continuous on the whole of \mathbb{R} .

Solution: It is easy to see that f(0) = 0 and $f(-y) = -f(y), \forall y \in \mathbb{R}$. Since |f(x) - f(y)| = |f(x-y)|, f is continuous everywhere once it is continuous at 0. Now since f is continuous at x_0 , given $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$, whenever $|x - x_0| < \delta$. Therefore, $|f(x-x_0)| < \epsilon$, whenever $|x - x_0| < \delta$. This is nothing but the continuity at 0.

- 8. (a) Let $f : [0,1] \to [0,1]$ be continuous. By considering the function g(x) = f(x) x or otherwise show that there exists x_0 with $f(x_0) = x_0$ [1]
 - (b) Let f be as above and satisfying f(f(y)) = f(y) for all y. Let $E_f = \{x : f(x) = x\}$. If E_f has at least two points then show that it must be an interval. [3]

Solution: (a) Assume $f(0) \neq 0$ and $f(1) \neq 1$, we are done otherwise. Consider g(x) = f(x) - x, then g(0) < 0 and g(1) > 0. Hence by intermediate value theorem there exists $x_0 \in [0, 1]$ such that $g(x_0) = 0$, hence $f(x_0) = x_0$.

(b) Note that $E_f = \text{Range}(f)$. Since f is continuous on [0, 1], range of f is an interval if it is not singleton.

9. Let $f : [0,1] \to \mathbb{R}$ be continuous in [0,1] and differentiable in (0,1) such that f(0) = 0 and $0 \le f'(x) \le 2f(x)$, for all $x \in (0,1)$. Prove that f(x) = 0 for all $x \in [0,1]$. [Hint: $g(x) = e^{-2x}f(x)$ may be useful.] [3]

Solution: Since $0 \le f'(x)$, for all $x \in (0,1)$, f is an increasing function on (0,1). Now since $f(0) = 0, f \ge 0$. Let us define $g(x) = e^{-2x}f(x)$ on [0,1]. Then $g'(x) = e^{-2x}(f'(x) - 2f(x)) \le 0$ due to the given condition. Hence g is decreasing. But g(0) = 0. This implies $g \le 0$ on (0,1) which implies $f \le 0$. Therefore, f = 0.

10. Show that if f is continuous on $[0, \infty)$ and uniformly continuous on $[a, \infty)$ for some positive constant a, then f is uniformly continuous on $[0, \infty)$. [4]

Solution: Since f is continuous on [0, a], f is uniformly continuous here. Let $\epsilon > 0$ be given. Then there exists positive δ_1, δ_2 such that

$$|f(x) - f(y)| < \frac{\epsilon}{2} < \epsilon, \tag{1}$$

whenever $x, y \in [0, a]$ and $|x - y| < \delta_1$ OR $x, y \in [a, \infty]$ and $|x - y| < \delta_2$. Take $\delta = \min(\delta_1, \delta_2)$. Let $x \in [0, a], y \in [a, \infty]$ and $|x - y| < \delta$. Then $|f(x) - f(y)| \le |f(x) - f(a)| + |f(a) - f(y)| < \epsilon$. Hence this δ works for all $x, y \in \mathbb{R}$ and f is uniformly continous on \mathbb{R} .

[3]

11. Let $f : [0,1] \to \mathbb{R}$ be a differentiable function such that there is no $x \in [0,1]$ such that f(x) = f'(x) = 0. Show that the set $Z := \{x \in [0,1] : f(x) = 0\}$ is finite. [3]

Solution: Assume f(x) = 0 for infinitely many $x \in [0, 1]$. Then there is a limit point $x_0 \in [0, 1]$ for this zero set. By continuity $f(x_0) = 0$. We will prove that $f'(x_0) = 0$ to get a contradiction. Let $\{x_n\} \subseteq [0, 1]$ be a sequence which converges to x_0 and $f(x_n) = 0, \forall n \in \mathbb{N}$. Then $f'(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$.

12. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(r + \frac{1}{n}) = f(r)$ for any rational number r and positive integer n. Prove that f is constant. [Hint: Is $f(r - \frac{1}{n}) = f(r)$ also for rational r and n = 1, 2, 3...] [3]

Solution: Let r be a rational number and $n \in \mathbb{N}$. Then $r - \frac{1}{n}$ is also a rational and $f(r) = f(r - \frac{1}{n} + \frac{1}{n}) = f(r - \frac{1}{n})$. Hence it may be concluded that f(0) = f(x) for any rational x. By continuity we f is a constant.