
Nov 5, 2014 Solution
Analysis I - FINAL Exam - Semester I

1. Let x1 ≥ x2 ≥ ..... ≥ 0. Show that
∞∑
1
xj is finite if and only if

∞∑
0
yj < ∞ where yk = 2kx2k for

k = 0, 1, 2, 3.... . [4]

Solution: Theorem 3.27 in Principles of Mathematical Analysis by Walter Rudin �

2. Let f : [a, b] → R be continuous and twice differentiable. Show that there exists c in (a, b) such

that f(b) = f(a) + (b− a)f ′(a) + (b−a)2
2! f ′′(c) [5]

Solution: Put n = 2 in Theorem 5.15 in Principles of Mathematical Analysis by Walter Rudin �

3. Let y1, y2, y3... be any Cauchy sequence of reals. Without using the completeness of R, show that
the sequence y1, y2... is a bounded sequence. [2]

Solution: Let ε > 0. There exists N ∈ N such that |yN − ym| < ε, ∀m ≥ N . Therefore every
element of the sequence after the N -th stage lies in the closed and bounded interval [yN − ε, yN +
ε]. There are only finitely many elements of the sequence outside this bounded interval. Hence
boundedness of the sequence follows. �

4. Show that the complex numbers C is complete. [You can use R is complete] [3]

Solution: Let {zn} be a Cauchy sequence in C and zn = an + ibn, ∀n ∈ N. Then {an} and {bn}
are Cauchy in R. Let {an} converges to a and {bn} converges to b in R then {zn} converges to
z = a+ ib in C. �

5. Let {xn}∞n=1 be a sequence defined by x1 = 1
2 and, for any n ≥ 1,

xn+1 =
x2n

x2n − xn + 1

prove that
∑∞

n=1 xn is convergent. [5]

Solution: Consider the function f(x) = x
x2−x+1 = x2

(x−1)2+x . Hence for 0 < x < 1, f(x) < x2

x = x.

Since x1 = 1
2 < 1, we get xn+1 = f(xn) < xn < 1,∀n ∈ N, inductively. Thus {xn} is monotonically

decreasing. We will apply ratio test to conclude the convergence. xn+1

xn
=

x2
n

x2
n−xn+1

xn
= xn

x2
n−xn+1 =

xn

(xn−1)2+xn
< 1. The last inequality follows because xn − 1 > 0. �

6. (a) Let un be a sequence of complex numbers with
∑
|un| <∞. Show that

∞∑
1
u2n exists. [3]

(b) Give an example a1, a2, ... a sequence of real numbers such that
∞∑
1
an exists but

∑
a2n = ∞

and prove your claim. [2]

Solution:
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(a) Since
∑
|un| < ∞, |un| < 1, for all n > N , for some N ∈ N. Therefore |un|2 < |un| for all

n > N . Hence
∞∑
1
u2n is absolutely convergent.

(b) Take an = (−1)n 1√
n

. Theorem 3.28 and Theorem 3.43 in Principles of Mathematical Analysis

by Walter Rudin proves what is the required.

�

7. Let f : R→ R be a function satisfying

f(x+ y) = f(x) + f(y)

for all x, y in R. If f is continuous at x0, show that f is continuous on the
whole of R. [3]

Solution: It is easy to see that f(0) = 0 and f(−y) = −f(y),∀y ∈ R. Since |f(x) − f(y)| =
|f(x− y)|, f is continuous everywhere once it is continuous at 0. Now since f is continuous at x0,
given ε > 0, there exists δ > 0 such that

∣∣f(x)− f(x0)
∣∣ < ε, whenever |x − x0| < δ. Therefore,

|f(x− x0)| < ε, whenever |x− x0| < δ. This is nothing but the continuity at 0. �

8. (a) Let f : [0, 1]→ [0, 1] be continuous. By considering the function g(x) = f(x)− x or otherwise
show that there exists x0 with f(x0) = x0 [1]

(b) Let f be as above and satisfying f(f(y)) = f(y) for all y. Let Ef = {x : f(x) = x}. If Ef has
at least two points then show that it must be an interval. [3]

Solution: (a) Assume f(0) 6= 0 and f(1) 6= 1, we are done otherwise. Consider g(x) = f(x) − x,
then g(0) < 0 and g(1) > 0. Hence by intermediate value theorem there exists x0 ∈ [0, 1] such that
g(x0) = 0, hence f(x0) = x0.

(b) Note that Ef = Range(f). Since f is continuous on [0, 1], range of f is an interval if it is not
singleton. �

9. Let f : [0, 1] → R be continuous in [0, 1] and differentiable in (0, 1) such that f(0) = 0 and
0 ≤ f ′(x) ≤ 2f(x), for all x ∈ (0, 1). Prove that f(x) = 0 for all x ∈ [0, 1]. [Hint: g(x) = e−2xf(x)
may be useful.] [3]

Solution: Since 0 ≤ f ′(x), for all x ∈ (0, 1), f is an increasing function on (0, 1). Now since
f(0) = 0, f ≥ 0. Let us define g(x) = e−2xf(x) on [0, 1]. Then g′(x) = e−2x(f ′(x) − 2f(x)) ≤ 0
due to the given condition. Hence g is decreasing. But g(0) = 0. This implies g ≤ 0 on (0, 1) which
implies f ≤ 0. Therefore, f = 0. �

10. Show that if f is continuous on [0,∞) and uniformly continuous on [a,∞) for some positive constant
a, then f is uniformly continuous on [0,∞). [4]

Solution: Since f is continuous on [0, a], f is uniformly continuous here. Let ε > 0 be given.
Then there exists positive δ1, δ2 such that

|f(x)− f(y)| < ε

2
< ε, (1)

whenever x, y ∈ [0, a] and |x− y| < δ1 OR x, y ∈ [a,∞] and |x− y| < δ2. Take δ = min (δ1, δ2). Let
x ∈ [0, a], y ∈ [a,∞] and |x− y| < δ. Then |f(x)− f(y)| ≤ |f(x)− f(a)|+ |f(a)− f(y)| < ε. Hence
this δ works for all x, y ∈ R and f is uniformly continous on R. �
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11. Let f : [0, 1] → R be a differentiable function such that there is no x ∈ [0, 1] such that f(x) =
f ′(x) = 0. Show that the set Z := {x ∈ [0, 1] : f(x) = 0} is finite. [3]

Solution: Asuume f(x) = 0 for infinitely many x ∈ [0, 1]. Then there is a limit point x0 ∈ [0, 1]
for this zero set. By continuity f(x0) = 0. We will prove that f ′(x0) = 0 to get a contradiction.
Let {xn} ⊆ [0, 1] be a sequence which converges to x0 and f(xn) = 0,∀n ∈ N. Then f ′(x0) =

limn→∞
f(xn)−f(x0)

xn−x0
= 0. �

12. Let f : R → R be a continuous function such that f(r + 1
n ) = f(r) for any rational number r and

positive integer n. Prove that f is constant. [Hint: Is f(r − 1
n ) = f(r) also for rational r and

n = 1, 2, 3... ] [3]

Solution: Let r be a rational number and n ∈ N. Then r − 1
n is also a rational and f(r) =

f(r − 1
n + 1

n ) = f(r − 1
n ). Hence it may be concluded that f(0) = f(x) for any rational x. By

continuity we f is a constant. �
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